

Contemporary Management Research
Pages 369-380, Vol. 4, No. 4, December 2008

Migrating to Relational Systems: Problems, Methods, and Strategies

Chang-Yang Lin
Eastern Kentucky University

E-Mail: cy.lin@eku.edu

ABSTRACT

In this review, migration refers to the process of moving from non-relational to
relational without manually rewriting all existing applications. The paper illustrates the
migration method and process, surveys the current migration products, and discusses
managerial issues for making the migration process effective. The discussion of these
issues will help the practitioner in planning migration projects.

Keywords: Relational Migration, Relational Data Bases, Legacy Systems, Data

Conversion, Language Transformation, Data Propagation

INTRODUCTION

Over the last two decades, relational platform has been a de-facto standard for
building both operational and analytical applications. For instance, current enterprise
systems have utilized relational databases to integrate applications across functional areas;
data warehouses have incorporated relational databases as a foundation to support data
mining operations and analytical processing. In today’s Internet era, relational systems
are more effective than non-relational ones in supporting e-business processes due to
their superior accessibility, scalability, and openness. Given the continued dependence on
relational technology, migrating to relational systems is increasingly becoming a
transition choice for over 10,000 major organizations that still employ non-relational data
bases such as flat files, hierarchical or network databases for their legacy systems
(Schwartz, 2005).

Legacy systems utilize a variety of non-relational database products (e.g., IMS,
VSAM, Adabas, DataComm, CA-IDMS), are coded in 2nd or 3rd generation languages
(e.g., Assembler, COBOL, JCL, PL/1), and often run on obsolete mainframe computers.

Contemporary Management Research 370

These non-relational legacy systems are problematic for several reasons. First, they are
hard to maintain and to expand because there is a general lack of understanding of how
the workflows and business rules are built into these non-relational systems. Second, they
are difficult to integrate with newer systems in a modern platform because of non-
extensibility, incompatibility, and less-openness of the underlying hardware and software
of these legacy systems (Bisbal et al., 1999). Third, faster application development in a
non-relational environment is hard to obtain because the non-relational systems operate at
a lower level of abstraction and require extensive record-at-a-time programming (Lin,
1992).

Despite of these problems, some organizations still keep their legacy systems for
mission-critical processes, and many continue to use non-relational technology for
creating various applications. Costs for migrating to relational systems can be high, and
organizations may not be able to afford abandoning their investment in existing non-
relational systems. Table 1 summarizes risks and benefits on relational migration (Lin,
2001).

Two main initiatives may be considered for moving toward a relational platform
from non-relational ones. For example, an organization can take an initiative to replace
legacy systems with relational-based integrated packages such as an enterprise resource
planning system from SAP or PeopleSoft. While this can be an appropriate approach in
some instances, it often fails to capture the logic that defines how organizations work.
An alternative is to have migration, where legacy systems are converted to modern
information architectures that “allow systems to be easily maintained and adapted to new
business requirements, while retaining functionality of the original legacy systems
without having to completely redevelop them” (Bisbal, et. al., 1999). Although migration
initiatives may target any new database platforms, many have been focusing on relational
database management systems such as IBM’s DB2, Oracle’s Database, Microsoft SQL
Server, or even the object-relational systems.

In this review, migration refers to the process of moving from non-relational to
relational without manually rewriting all existing applications. The paper illustrates the
migration method and process, surveys the current migration products, discusses
managerial issues for making the migration process effective. The discussion of these
issues will help the practitioner in planning migration projects. The three steps in
relational conversion are suggested for migration.

 Contemporary Management Research 371

Table 1 Migrating to Relational Systems: Benefits and Risks

Benefits Risks
Stay Strategic Competitiveness
 Relational databases are data solutions

for data warehouses, enterprise
resource planning systems, customer
relationship management systems,
supply chain management systems, and
e-business applications.

 Relational systems provide the tabular
data construct, the set operations, and
ongoing enhancements for flexibility,
compatibility, and scalability.

Enable User-Developed Applications
 Relational systems permit flexible

information retrieval with the use of
SQL, which is much easier to code for
users.

 Business specialists may exploit
relational data marts with data mining
tools.

Faster Applications Development
 Many aspects of relational design and

implementation require lower skill
levels than do those of other
techniques.

 IS professionals use front-end 4GL
tools that support prototyping and RAD
for the development of applications.

Disruption & Extra Costs
 The staff must divide their time

between maintenance of existing non-
relational systems, which requires
100% availability, and migration
projects.

 The relational DBMS, migration tools,
and additional design and programming
are all extra and costly.

 The significant investments in non-
relational systems would have to be
scraped.

Resistance to Change
 Relational systems require dramatic

changes in business processes, and
resistance to change can be expected.

 IS professionals must be familiar with
the object-oriented languages such as
Java and VB under J2EE or .NET
environment.

 Business users will have to be trained
in the use of SQL and other data mining
tools.

Poor Performance
 Performance degradation is expected

for most relational migrations.

Contemporary Management Research 372

MIGRATION PROCESSES AND TOOLS
Migration consists of two separate but related processes: converting the data and

converting the programs.

Converting data

Converting data and applications generally follows three stages of the migration
process: capture the source data, map or create a relational database model, and migrate
the source data (see Figure 1). The capture process performs metadata extraction and
creates a source data model. In the map stage, source data model representing files and
hierarchical or network databases is reverse-engineered into a conceptual or logical data
model. This logical data model is in turn reengineered into a relational schema, which
must then be transformed into a physical data base. During the mapping process, the data
used in applications program can also be analyzed to derive a logical data model. A
synthesis is required for these two types of derived data models. Finally, in the migrate
stage, a stored database structure based on the relational database schema is created, and
all data from the source database are moved to the relational database.

data data
Migrate

Source DDL
Capture

Source DDL

Map

Figure 1: Migrating to Relational Database

Destination Database
(Relational Database)

Relational Database
Model

Source Database
Model

Source Data
(Files, Non-relational

Legacy Application
Programs

The conversion of flat files is straightforward, particularly if the old files are well

designed. Migration programs can be written to automatically convert files from the old
to the new relational table structure. However, the database conversion effort cannot be
performed automatically if record types are not in normal forms, fields for linking record

 Contemporary Management Research 373

types are not present or formats of record types are significantly different from the new
table structure. In these cases, extra effort using an analysis tool is required to identify
common data items and to transform files into normal forms. A file is then mapped into
two or more tables. Manual conversion is necessary if the analysis does not result in a
satisfactory specification that is independent of the old file structure. An expert system is
also needed to analyze the applications programs when a large amount of business logic
about the data is built into the applications.

The conversion of hierarchical or network databases is more difficult because
records are related by embedded pointers rather than by common fields. Both reverse
engineering and reengineering techniques are required to transform non-relational
databases into relational databases.

Converting programs

Converting application programs to a relational platform is not as straightforward as
converting data, because programs written in a non-relational environment typically use
logic that is record oriented. These programs usually must be reverse engineered and
rewritten to operate in a relational environment. There are three approaches to converting
application programs:

1. Establishing a bridge linking non-relational programs with relational databases.
2. Redesigning or rewriting the access to data.
3. Rewriting the entire program.

The first approach to converting programs is to establish a bridge linking non-
relational application programs with relational databases. In this approach, legacy
programs remain unchanged, and the transparency layer becomes responsible for
providing a bridge between the legacy programs and the relational databases (Hoey,
2006). Due to the incompatible characteristics between SQL and non-relational database
languages (Meier, 1994) tremendous effort must be devoted to the development of a
translator or a driver that can precompile existing non-relational programs to access
relational databases. Such a translator could be used in conjunction with an expert system
or CASE tools (e.g., reverse-engineering, reengineering, and code-generating tools)
during the migration process.

The second approach is to redesign and rewrite the access of data for the existing
non-relational programs. The SQL statements are developed to replace the record-at-time

Contemporary Management Research 374

I/O codes from COBOL or non-relational database languages such as CODASYL and
DL/1. To identify such I/O codes, an analyst must isolate data access logic from the rest
of the program logic into which the SQL statements will be placed. Because data access
for some non-relational applications has similar logic, programs can be written to
automatically convert data access for such applications.

Finally, some old programs may have to be completely rewritten from scratch. A
comprehensive approach can be used to redesign and rewrite such non-relational
programs.

Migration Tools and Products

In addition to computer-assisted software engineering (CASE), the so-called
migration tools play a significant role in the conversion of legacy systems to a relational
platform. For the earlier legacy migration tools, see the study by Gillenson for detail
(Gillenson, 1990). This section identifies, from the Internet search, the current tools and
products that automate legacy data and code conversion. Based on their capabilities, these
tools are divided into three groups: data and application conversion, code conversion, and
data propagation. Table 2 provides a general summary of current relational migration
tools and products.

Software vendors such as BluePhoneix, SWS Software, and Anubex focus their
attention on the tools that support a comprehensive conversion of the entire environment
including analysis, database remodeling, code migration, data-migration program
generation, and data propagation. From the products of the BluePhoneix family, the
Discovery IT provides an automated, detailed mapping of system-wide IT activity, the
DBMSMigrator converts a non-relational database to a relational database, and the
LanguageMigrator moves legacy codes to more mainstream COBOL and Java. For
example, in moving away from IDMS to the J2EE environment for the DaimlerChrysler,
the project team began with BluePhoenix IT discovery tool to finalize a map for the code
conversion and database migration. These were then performed using BluePhoenix
DBMSMigrator that follows the approach illustrated in Figure 1.

In contrast, some vendors specialize in either data or code conversion. In the case of
code conversion, the Acu4GL from Acucorp is used to translate COBOL I-O verbs into
SQL, the I2C from m2o converts CA-IDEAL or CA-NATURAL to COBOL and Java
with embedded SQL. In the case of data conversion, the TSI’s tRelational/DPS allows

 Contemporary Management Research 375

forward and reverse re-engineering to migrate an ADABAS system into relational-based
data stores and data warehouses, and Fujitsu-Siemens’ UDS/SQL enables application
programs to access CODASYL and relational databases concurrently by propagating the
updates of one database to the other.

Table 2 Relational Migration Products

Vendor (website) Product Features and Functions

Data and Application Conversion

BluePhoneix
(bphx.com)

DBMSMigrator

LanguageMigrator

IDMS, IMS, ADABAS, VSAM --> DB2,
SQL Server, Oracle

COBOL, Natural, ADSO --> Java
Treehouse
(treehouse.com) tRelational/DPS ADBAS --> RDMS-based data stores &

data warehouses

SWS
(sws.de)

HIREL, IXREL
VREL, VIXREL

IMS, CODASYL --> DB2, Oracle
VSAM --> DB2, Oracle

Anubex
(anubex.com) Anugen I/O IDMS, ISAM, VSAM --> Oracle, DB2

Code/Program Conversion

Computer Associates
(ca.com)

Evolveware’s S2T

AllFusion

Capture business model from legacy code
Code generator for J2EE, .Net, Web

Acucorp
(acucorp.com) Acu4GL COBOL I-O verbs --> SQL

Semantic Designs
(semdesigns.com) DMS COBOL, JCL, Natural --> Java, XML,

PLSQL
m2o
(move2open.com) I2C CA-Datacom, CA-IDEAL --> COBOL &

JAVA with embedded SQL

Data Propagation

Fujitsu-Siemens
(fujitsu-siemens.com) UDS/SQL

Enables application programs to access
CODASYL & relational databases
concurrently

Contemporary Management Research 376

PLANNING MIGRATION PROCESS
Relational database migration is an onerous, labor, time- and cost-consuming

process. Since it is too risky to convert all applications at once, an organization should
select one mission-critical application to convert first. This section discusses migration
strategies and suggests the four-steps in relational conversion.

Migration Strategies

Proper strategies will have to be incorporated into a migration plan under different
conditions. Three promising migration strategies - data and code conversion, language
transformation, and data propagation - can avoid the effort and risk involved in relational
conversion. Data and code conversion is an appropriate migration strategy under the
condition where data is accessed by a relatively small number of programs (Meier, 1995).
First, the legacy data stores are converted to a relational database. Second, the legacy
codes are converted to modern languages such as SQL. This strategy has an advantage
that it needs only one single copy of data – a target relational database.

Language translation involves building a bridge to link legacy programs with a
target relational database. As discussed in the previous session, the bridge or the driver is
extremely difficult to build; therefore language translation has not proved to be effective,
especially for very large databases where a large number of significant simultaneous
changes are involved (Meier, 1995).

Data propagation maintains consistency between legacy data stores and a target
relational database by propagating only data changes from one data store to the other.
The advantage of this strategy is that it does not convert legacy programs and therefore it
avoids the efforts and risks involved in converting and interfacing with legacy
applications (Meier, 1995). On the other hand, this strategy will slow the performance or
availability of the operational application as the volume of data to be moved increases
between two data stores.

Four Steps of Relational Conversion

The relational conversion process can be simplified into four important steps:
converting data bases, converting programs, training, and documentation. In general, the
conversion process is not strictly sequential. Tasks performed in each step can overlap. A
non-sequential view of the conversion process (Lin, 2001) is shown in Figure 2.

 Contemporary Management Research 377

The first step is to convert data bases. A set of programs must be used to read or to
scan the legacy files to the new relational tables. Tables that are designed to store data
about events or transactions are also created. The objective is to establish relational data
bases that meet third or higher normal form. In this step, relational data bases and legacy
data stores are maintained in parallel during the conversion steps.

The next step is to convert programs. The translators and the I/O routines must be
developed to enable existing legacy programs to access relational data bases. For
application programs that are not convertible, a total approach that redesigns and rewrites
entire programs to fit into a relational structure is required.

Steps
3 and 4

Convert relatively
permanent data

Convert
transaction data

Step 1

Step 2

Time

T
as

ks

Rewrite the online
transactions
Rewrite the online inquiry &
reports

Rewrite update programs

Training and document procedures and policies

Establish a link between relational
data base & the legacy programs
Rewrite the access of data for the
legacy programs

Figure 2 The Four Steps in Relational Conversion

Nevertheless, entire applications programs must be gradually migrated using

relational database programming and Web programming. Online transaction programs
using 4Gls and Java can be developed to collect data about events or transactions. A new

Contemporary Management Research 378

relational data base that uses visual 4GL components or simply SQL to retrieve
information or generate reports should also be opened for user-developed applications.
The conversion of the update programs then progresses to the final phase.

Finally, documentation of relational-specific policies and procedures is finalized.
The documentation is actually a by-product of the conversion process. Among the most
important components are the resolution of strategic issues and the adequate training of
systems development professionals in the use of relational tools.

For all of the above steps, migration products (see Table 2) and CASE tools can be
used to support the automation of the tasks to some extent.

MANAGERIAL ISSUES AND CONCLUSION

Relational migration is not only a technical task but also a managerial challenge for
the organization. Several issues to be discussed below must be resolved for successful
conversion to a relational environment. The discussion of these issues, migration
strategies, and the suggested steps in relational conversion will help the practitioner in
planning migration projects.

Selection of a Relational DBMS

The organization will have to choose an appropriate relational DBMS for its
information infrastructure. Due to the increased tactical use of business intelligence, the
infrastructure must accommodate mixed workloads of analytic, operational and
transactional functions. For transactional functions, the infrastructure not only must
support complete tasks for applications development but also must perform acceptably.
For analytical functions, the infrastructure must be equipped with high-level visual
software components to support user-developed applications.

Several questions should also be addressed before selecting a relational
infrastructure: How effective the relational DBMS supports the installations such as
mainframe, UNIX, and Linux? If an organization already has several different relational
systems, which of these systems should be selected for the migration project? Should an
organization choose from one of the top three relational systems (i.e., DB2, Oracle, and
Microsoft SQL Server) dominating more than 85% of the market or an open source
system like MySQL supporting lower-end or simpler web-based applications
development?

 Contemporary Management Research 379

Selection of Legacy Migration Tools and CASE Tools

Organizations have typically used automated migration tools to support the
conversion process as illustrated in Figures 1 and 2. As each step is being automated, a
commensurate drop in manual errors is expected to be realized. It can be a challenge to
select the appropriate tools for migration.

When selecting tools to support migration, an organization should evaluate them in
terms of their capabilities, extensibilities, openness, and standards. For example, does the
tool automate information capturing of existing applications, reverse reengineering, and
forward reengineering? Does the tool allow for the third-party add-on components? Does
the tool interconnect all other software components? Does the tool support industry-
standard metadata exchange formats such as CASE Definition Interchange Format
(CDIF)?

CASE tools, which facilitate the conversion of non-relational systems to relational
systems, perform highly automated reverse engineering and forward reengineering
functions. An organization should also follow applications development standards to
select the proper CASE tools for conversion.

The Simultaneous Use of Multiple Databases

The simultaneous use of the source data stores and the target relational database
must be planned for when a parallel installation is to be adopted during the conversion
process. Procedures necessary for the effective coordination of two databases must be
established so that the integrity of the databases is maintained and business is conducted
as usual.

Policies and Guidelines

Systems development management must develop relational-specific policies,
procedures, methodologies, standards, and guidelines to support the new functions
supported by the relational infrastructure. For example, techniques for the program
design and construction phase should be updated so that developers must take advantage
of the set-at-a-time processing enabled by SQL. In addition, the use of a specific CASE-
supported development methodology must be enforced.

Contemporary Management Research 380

Training

Systems development professionals and end users must prepare for relational
technology by accepting additional training. Systems development professionals should
receive comprehensive training with an emphasis on data management concepts, CASE-
driven systems development, set-at-a-time database programming, and web programming
under the J2EE environment. End users should learn the use of 4GL and SQL for
generating reports and for retrieving information from a relational database or a data
warehouse.

REFERENCES

Bisbal, J.; Lawless, D.; Wu, B.; and Grimson, J. (1999). Legacy Information System
Migration: A Brief Review of Problems, Solutions and Research Issue. IEEE
Software, 6(5), 1-18.

Comella-Dorda; Wallnau, K.; Seacord, R.; Robert, J. (2000). A Survey of Legacy System
Modernization Approach. Retrieved October 8, 2008 from
http://www.sei.cmu.edu/publications/documents/00.reports/00tn003.html

Gillenson, M. L. (1990). Physical Design Equivalencies in Database Conversion.
Communications of the ACM, 33, 120-131.

Hoey, S. (2006). IMS to DB2 Migration: Exploring the Options. Z/Journal. Retrieved
February 21, 2007, from http://www.zjournal.com

Lin, C. (1992). Reengineering to a Relational Data Base Structures. Software
Engineering, 3(1), 17-21.

Lin, C. (2001). Relational Database Conversion: Issues and Approaches. In Sanjiv Purba
(Ed.), High-Performance Web Databases: Design, Development, and Deployment
(pp. 559-568). Florida: CRC Press LLC.

Meier, A. (1995). Providing Migration Tools: A Practitioner’s View. Proceedings of the
21st VLDS Conference, Switzerland, 635-641.

Meier, A. (1995). Providing Migration Tools: A Practitioner’s View. Proceedings of the
21st VLDS Conference, 635-641.

Meier, A.; Mercerat, J.; Muriset, A.; Untersinger, J.; Eckerlin, R.; and Ferrara, F. (1994).
Hierarchical to Relational Database Migration. IEEE Software, 11(3), 21-27.

Schwartz, E. (2005). Expanding Legacy Apps. InfoWorld. Retrieved November 15, 2006,
from http://www.InfoWorld.com

